If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+8x-35=0
a = 15; b = 8; c = -35;
Δ = b2-4ac
Δ = 82-4·15·(-35)
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{541}}{2*15}=\frac{-8-2\sqrt{541}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{541}}{2*15}=\frac{-8+2\sqrt{541}}{30} $
| 1/4x+15=19 | | 2/7x+3=-9/7x-4 | | 34=17+y | | 25=-5/9w | | 2.1x-1.3x=2.2 | | 9s-1/3=3(2/3 | | 22z+24.50=47z+18.25 | | -360=-18m | | (2w+7)(5-w)=0 | | 2x/3+8=12 | | 15x^2+8x^2-35=0 | | -94+8x=13x+106 | | 8x=40=4x | | 9s-1/3=(3)2/3 | | 6x-1=-4+99 | | 24=3u+3 | | 4(2x+9)=15x+12-7x+24 | | 2(1.3x+8)=20+2.4 | | 95(5+x)=855 | | 5(3y-1)=35 | | -x+11x=9 | | 95(5+x)=665 | | -1=n+13 | | 3(3x+1)=9x-6 | | 2(1.3x=8)=20+2.4x | | 95(5+x)=1330 | | 2(3^(2x-3))=5x | | 0.1(x–6)+0.05x=30 | | 24=5f+3f | | x-1=-1/8x+21 | | X^2-21x+132=0 | | 7x-3=239-4x |